fix: Mid-point for rounded linears are not precisely centered (#9544)

This commit is contained in:
Márk Tolmács
2025-06-12 21:08:37 +02:00
committed by GitHub
parent 9f3fdf5505
commit f0458cc216
21 changed files with 609 additions and 661 deletions

View File

@@ -0,0 +1,57 @@
export const PRECISION = 10e-5;
// Legendre-Gauss abscissae (x values) and weights for n=24
// Refeerence: https://pomax.github.io/bezierinfo/legendre-gauss.html
export const LegendreGaussN24TValues = [
-0.0640568928626056260850430826247450385909,
0.0640568928626056260850430826247450385909,
-0.1911188674736163091586398207570696318404,
0.1911188674736163091586398207570696318404,
-0.3150426796961633743867932913198102407864,
0.3150426796961633743867932913198102407864,
-0.4337935076260451384870842319133497124524,
0.4337935076260451384870842319133497124524,
-0.5454214713888395356583756172183723700107,
0.5454214713888395356583756172183723700107,
-0.6480936519369755692524957869107476266696,
0.6480936519369755692524957869107476266696,
-0.7401241915785543642438281030999784255232,
0.7401241915785543642438281030999784255232,
-0.8200019859739029219539498726697452080761,
0.8200019859739029219539498726697452080761,
-0.8864155270044010342131543419821967550873,
0.8864155270044010342131543419821967550873,
-0.9382745520027327585236490017087214496548,
0.9382745520027327585236490017087214496548,
-0.9747285559713094981983919930081690617411,
0.9747285559713094981983919930081690617411,
-0.9951872199970213601799974097007368118745,
0.9951872199970213601799974097007368118745,
];
export const LegendreGaussN24CValues = [
0.1279381953467521569740561652246953718517,
0.1279381953467521569740561652246953718517,
0.1258374563468282961213753825111836887264,
0.1258374563468282961213753825111836887264,
0.121670472927803391204463153476262425607,
0.121670472927803391204463153476262425607,
0.1155056680537256013533444839067835598622,
0.1155056680537256013533444839067835598622,
0.1074442701159656347825773424466062227946,
0.1074442701159656347825773424466062227946,
0.0976186521041138882698806644642471544279,
0.0976186521041138882698806644642471544279,
0.086190161531953275917185202983742667185,
0.086190161531953275917185202983742667185,
0.0733464814110803057340336152531165181193,
0.0733464814110803057340336152531165181193,
0.0592985849154367807463677585001085845412,
0.0592985849154367807463677585001085845412,
0.0442774388174198061686027482113382288593,
0.0442774388174198061686027482113382288593,
0.0285313886289336631813078159518782864491,
0.0285313886289336631813078159518782864491,
0.0123412297999871995468056670700372915759,
0.0123412297999871995468056670700372915759,
];

View File

@@ -2,6 +2,7 @@ import { doBoundsIntersect, type Bounds } from "@excalidraw/element";
import { isPoint, pointDistance, pointFrom, pointFromVector } from "./point";
import { vector, vectorNormal, vectorNormalize, vectorScale } from "./vector";
import { LegendreGaussN24CValues, LegendreGaussN24TValues } from "./constants";
import type { Curve, GlobalPoint, LineSegment, LocalPoint } from "./types";
@@ -406,3 +407,123 @@ export function offsetPointsForQuadraticBezier(
return offsetPoints;
}
/**
* Implementation based on Legendre-Gauss quadrature for more accurate arc
* length calculation.
*
* Reference: https://pomax.github.io/bezierinfo/#arclength
*
* @param c The curve to calculate the length of
* @returns The approximated length of the curve
*/
export function curveLength<P extends GlobalPoint | LocalPoint>(
c: Curve<P>,
): number {
const z2 = 0.5;
let sum = 0;
for (let i = 0; i < 24; i++) {
const t = z2 * LegendreGaussN24TValues[i] + z2;
const derivativeVector = curveTangent(c, t);
const magnitude = Math.sqrt(
derivativeVector[0] * derivativeVector[0] +
derivativeVector[1] * derivativeVector[1],
);
sum += LegendreGaussN24CValues[i] * magnitude;
}
return z2 * sum;
}
/**
* Calculates the curve length from t=0 to t=parameter using the same
* Legendre-Gauss quadrature method used in curveLength
*
* @param c The curve to calculate the partial length for
* @param t The parameter value (0 to 1) to calculate length up to
* @returns The length of the curve from beginning to parameter t
*/
export function curveLengthAtParameter<P extends GlobalPoint | LocalPoint>(
c: Curve<P>,
t: number,
): number {
if (t <= 0) {
return 0;
}
if (t >= 1) {
return curveLength(c);
}
// Scale and shift the integration interval from [0,t] to [-1,1]
// which is what the Legendre-Gauss quadrature expects
const z1 = t / 2;
const z2 = t / 2;
let sum = 0;
for (let i = 0; i < 24; i++) {
const parameter = z1 * LegendreGaussN24TValues[i] + z2;
const derivativeVector = curveTangent(c, parameter);
const magnitude = Math.sqrt(
derivativeVector[0] * derivativeVector[0] +
derivativeVector[1] * derivativeVector[1],
);
sum += LegendreGaussN24CValues[i] * magnitude;
}
return z1 * sum; // Scale the result back to the original interval
}
/**
* Calculates the point at a specific percentage of a curve's total length
* using binary search for improved efficiency and accuracy.
*
* @param c The curve to calculate point on
* @param percent A value between 0 and 1 representing the percentage of the curve's length
* @returns The point at the specified percentage of curve length
*/
export function curvePointAtLength<P extends GlobalPoint | LocalPoint>(
c: Curve<P>,
percent: number,
): P {
if (percent <= 0) {
return bezierEquation(c, 0);
}
if (percent >= 1) {
return bezierEquation(c, 1);
}
const totalLength = curveLength(c);
const targetLength = totalLength * percent;
// Binary search to find parameter t where length at t equals target length
let tMin = 0;
let tMax = 1;
let t = percent; // Start with a reasonable guess (t = percent)
let currentLength = 0;
// Tolerance for length comparison and iteration limit to avoid infinite loops
const tolerance = totalLength * 0.0001;
const maxIterations = 20;
for (let iteration = 0; iteration < maxIterations; iteration++) {
currentLength = curveLengthAtParameter(c, t);
const error = Math.abs(currentLength - targetLength);
if (error < tolerance) {
break;
}
if (currentLength < targetLength) {
tMin = t;
} else {
tMax = t;
}
t = (tMin + tMax) / 2;
}
return bezierEquation(c, t);
}