Files
mermaid/packages/mermaid-layout-elk/src/render.ts
2024-09-18 13:10:07 +05:30

1014 lines
33 KiB
TypeScript

import { curveLinear } from 'd3';
import ELK from 'elkjs/lib/elk.bundled.js';
import type { InternalHelpers, LayoutData, RenderOptions, SVG, SVGGroup } from 'mermaid';
import { type TreeData, findCommonAncestor } from './find-common-ancestor.js';
export const render = async (
data4Layout: LayoutData,
svg: SVG,
{
common,
getConfig,
insertCluster,
insertEdge,
insertEdgeLabel,
insertMarkers,
insertNode,
interpolateToCurve,
labelHelper,
log,
positionEdgeLabel,
}: InternalHelpers,
{ algorithm }: RenderOptions
) => {
const nodeDb: Record<string, any> = {};
const clusterDb: Record<string, any> = {};
const addVertex = async (nodeEl: any, graph: { children: any[] }, nodeArr: any, node: any) => {
const labelData: any = { width: 0, height: 0 };
let boundingBox;
const child = {
...node,
};
graph.children.push(child);
nodeDb[node.id] = child;
const config = getConfig();
// Add the element to the DOM
if (!node.isGroup) {
const childNodeEl = await insertNode(nodeEl, node, { config, dir: node.dir });
boundingBox = childNodeEl.node().getBBox();
child.domId = childNodeEl;
child.width = boundingBox.width;
child.height = boundingBox.height;
} else {
// A subgraph
child.children = [];
await addVertices(nodeEl, nodeArr, child, node.id);
if (node.label) {
// @ts-ignore TODO: fix this
const { shapeSvg, bbox } = await labelHelper(nodeEl, node, undefined, true);
labelData.width = bbox.width;
labelData.wrappingWidth = config.flowchart!.wrappingWidth;
// Give some padding for elk
labelData.height = bbox.height - 2;
labelData.labelNode = shapeSvg.node();
// We need the label hight to be able to size the subgraph;
shapeSvg.remove();
} else {
// Subgraph without label
labelData.width = 0;
labelData.height = 0;
}
child.labelData = labelData;
child.domId = nodeEl;
}
};
const addVertices = async function (
nodeEl: any,
nodeArr: any[],
graph: {
id: string;
layoutOptions: {
'elk.hierarchyHandling': string;
'elk.algorithm': any;
'nodePlacement.strategy': any;
'elk.layered.mergeEdges': any;
'elk.direction': string;
'spacing.baseValue': number;
};
children: never[];
edges: never[];
},
parentId?: undefined
) {
const siblings = nodeArr.filter((node: { parentId: any }) => node.parentId === parentId);
log.info('addVertices APA12', siblings, parentId);
// Iterate through each item in the vertex object (containing all the vertices found) in the graph definition
await Promise.all(
siblings.map(async (node: any) => {
await addVertex(nodeEl, graph, nodeArr, node);
})
);
return graph;
};
const drawNodes = async (
relX: number,
relY: number,
nodeArray: any[],
svg: any,
subgraphsEl: SVGGroup,
depth: number
) => {
await Promise.all(
nodeArray.map(async function (node: {
id: string | number;
x: any;
y: any;
width: number;
labels: { width: any }[];
height: number;
isGroup: any;
labelData: any;
offset: { posX: number; posY: number };
shape: any;
domId: { node: () => any; attr: (arg0: string, arg1: string) => void };
}) {
if (node) {
nodeDb[node.id] = node;
nodeDb[node.id].offset = {
posX: node.x + relX,
posY: node.y + relY,
x: relX,
y: relY,
depth,
width: Math.max(node.width, node.labels ? node.labels[0]?.width || 0 : 0),
height: node.height,
};
if (node.isGroup) {
log.debug('Id abc88 subgraph = ', node.id, node.x, node.y, node.labelData);
const subgraphEl = subgraphsEl.insert('g').attr('class', 'subgraph');
// TODO use faster way of cloning
const clusterNode = JSON.parse(JSON.stringify(node));
clusterNode.x = node.offset.posX + node.width / 2;
clusterNode.y = node.offset.posY + node.height / 2;
await insertCluster(subgraphEl, clusterNode);
log.debug('Id (UIO)= ', node.id, node.width, node.shape, node.labels);
} else {
log.info(
'Id NODE = ',
node.id,
node.x,
node.y,
relX,
relY,
node.domId.node(),
`translate(${node.x + relX + node.width / 2}, ${node.y + relY + node.height / 2})`
);
node.domId.attr(
'transform',
`translate(${node.x + relX + node.width / 2}, ${node.y + relY + node.height / 2})`
);
}
}
})
);
await Promise.all(
nodeArray.map(async function (node: { isGroup: any; x: any; y: any; children: any }) {
if (node?.isGroup) {
await drawNodes(relX + node.x, relY + node.y, node.children, svg, subgraphsEl, depth + 1);
}
})
);
};
const addSubGraphs = (nodeArr: any[]): TreeData => {
const parentLookupDb: TreeData = { parentById: {}, childrenById: {} };
const subgraphs = nodeArr.filter((node: { isGroup: any }) => node.isGroup);
log.info('Subgraphs - ', subgraphs);
subgraphs.forEach((subgraph: { id: string }) => {
const children = nodeArr.filter((node: { parentId: any }) => node.parentId === subgraph.id);
children.forEach((node: any) => {
parentLookupDb.parentById[node.id] = subgraph.id;
if (parentLookupDb.childrenById[subgraph.id] === undefined) {
parentLookupDb.childrenById[subgraph.id] = [];
}
parentLookupDb.childrenById[subgraph.id].push(node);
});
});
subgraphs.forEach(function (subgraph: { id: string | number }) {
const data: any = { id: subgraph.id };
if (parentLookupDb.parentById[subgraph.id] !== undefined) {
data.parent = parentLookupDb.parentById[subgraph.id];
}
});
return parentLookupDb;
};
const getEdgeStartEndPoint = (edge: any) => {
const source: any = edge.start;
const target: any = edge.end;
// Save the original source and target
const sourceId = source;
const targetId = target;
const startNode = nodeDb[edge.start.id];
const endNode = nodeDb[edge.end.id];
if (!startNode || !endNode) {
return { source, target };
}
// Add the edge to the graph
return { source, target, sourceId, targetId };
};
const calcOffset = function (src: string, dest: string, parentLookupDb: TreeData) {
const ancestor = findCommonAncestor(src, dest, parentLookupDb);
if (ancestor === undefined || ancestor === 'root') {
return { x: 0, y: 0 };
}
const ancestorOffset = nodeDb[ancestor].offset;
return { x: ancestorOffset.posX, y: ancestorOffset.posY };
};
/**
* Add edges to graph based on parsed graph definition
*/
const addEdges = async function (
dataForLayout: { edges: any; direction?: string },
graph: {
id?: string;
layoutOptions?: {
'elk.hierarchyHandling': string;
'elk.algorithm': any;
'nodePlacement.strategy': any;
'elk.layered.mergeEdges': any;
'elk.direction': string;
'spacing.baseValue': number;
};
children?: never[];
edges: any;
},
svg: SVG
) {
log.info('abc78 DAGA edges = ', dataForLayout);
const edges = dataForLayout.edges;
const labelsEl = svg.insert('g').attr('class', 'edgeLabels');
const linkIdCnt: any = {};
const dir = dataForLayout.direction || 'DOWN';
let defaultStyle: string | undefined;
let defaultLabelStyle: string | undefined;
await Promise.all(
edges.map(async function (edge: {
id: string;
start: string;
end: string;
length: number;
text: undefined;
label: any;
type: string;
stroke: any;
interpolate: undefined;
style: undefined;
labelType: any;
}) {
// Identify Link
const linkIdBase = edge.id; // 'L-' + edge.start + '-' + edge.end;
// count the links from+to the same node to give unique id
if (linkIdCnt[linkIdBase] === undefined) {
linkIdCnt[linkIdBase] = 0;
log.info('abc78 new entry', linkIdBase, linkIdCnt[linkIdBase]);
} else {
linkIdCnt[linkIdBase]++;
log.info('abc78 new entry', linkIdBase, linkIdCnt[linkIdBase]);
}
const linkId = linkIdBase + '_' + linkIdCnt[linkIdBase];
edge.id = linkId;
log.info('abc78 new link id to be used is', linkIdBase, linkId, linkIdCnt[linkIdBase]);
const linkNameStart = 'LS_' + edge.start;
const linkNameEnd = 'LE_' + edge.end;
const edgeData: any = { style: '', labelStyle: '' };
edgeData.minlen = edge.length || 1;
edge.text = edge.label;
// Set link type for rendering
if (edge.type === 'arrow_open') {
edgeData.arrowhead = 'none';
} else {
edgeData.arrowhead = 'normal';
}
// Check of arrow types, placed here in order not to break old rendering
edgeData.arrowTypeStart = 'arrow_open';
edgeData.arrowTypeEnd = 'arrow_open';
/* eslint-disable no-fallthrough */
switch (edge.type) {
case 'double_arrow_cross':
edgeData.arrowTypeStart = 'arrow_cross';
case 'arrow_cross':
edgeData.arrowTypeEnd = 'arrow_cross';
break;
case 'double_arrow_point':
edgeData.arrowTypeStart = 'arrow_point';
case 'arrow_point':
edgeData.arrowTypeEnd = 'arrow_point';
break;
case 'double_arrow_circle':
edgeData.arrowTypeStart = 'arrow_circle';
case 'arrow_circle':
edgeData.arrowTypeEnd = 'arrow_circle';
break;
}
let style = '';
let labelStyle = '';
switch (edge.stroke) {
case 'normal':
style = 'fill:none;';
if (defaultStyle !== undefined) {
style = defaultStyle;
}
if (defaultLabelStyle !== undefined) {
labelStyle = defaultLabelStyle;
}
edgeData.thickness = 'normal';
edgeData.pattern = 'solid';
break;
case 'dotted':
edgeData.thickness = 'normal';
edgeData.pattern = 'dotted';
edgeData.style = 'fill:none;stroke-width:2px;stroke-dasharray:3;';
break;
case 'thick':
edgeData.thickness = 'thick';
edgeData.pattern = 'solid';
edgeData.style = 'stroke-width: 3.5px;fill:none;';
break;
}
edgeData.style = edgeData.style += style;
edgeData.labelStyle = edgeData.labelStyle += labelStyle;
const conf = getConfig();
if (edge.interpolate !== undefined) {
edgeData.curve = interpolateToCurve(edge.interpolate, curveLinear);
} else if (edges.defaultInterpolate !== undefined) {
edgeData.curve = interpolateToCurve(edges.defaultInterpolate, curveLinear);
} else {
// @ts-ignore TODO: fix this
edgeData.curve = interpolateToCurve(conf.curve, curveLinear);
}
if (edge.text === undefined) {
if (edge.style !== undefined) {
edgeData.arrowheadStyle = 'fill: #333';
}
} else {
edgeData.arrowheadStyle = 'fill: #333';
edgeData.labelpos = 'c';
}
edgeData.labelType = edge.labelType;
edgeData.label = (edge?.text || '').replace(common.lineBreakRegex, '\n');
if (edge.style === undefined) {
edgeData.style = edgeData.style || 'stroke: #333; stroke-width: 1.5px;fill:none;';
}
edgeData.labelStyle = edgeData.labelStyle.replace('color:', 'fill:');
edgeData.id = linkId;
edgeData.classes = 'flowchart-link ' + linkNameStart + ' ' + linkNameEnd;
const labelEl = await insertEdgeLabel(labelsEl, edgeData);
// calculate start and end points of the edge, note that the source and target
// can be modified for shapes that have ports
// @ts-ignore TODO: fix this
const { source, target, sourceId, targetId } = getEdgeStartEndPoint(edge, dir);
log.debug('abc78 source and target', source, target);
// Add the edge to the graph
graph.edges.push({
// @ts-ignore TODO: fix this
id: 'e' + edge.start + edge.end,
...edge,
sources: [source],
targets: [target],
sourceId,
targetId,
labelEl: labelEl,
labels: [
{
width: edgeData.width,
height: edgeData.height,
orgWidth: edgeData.width,
orgHeight: edgeData.height,
text: edgeData.label,
layoutOptions: {
'edgeLabels.inline': 'true',
'edgeLabels.placement': 'CENTER',
},
},
],
edgeData,
});
})
);
return graph;
};
function dir2ElkDirection(dir: any) {
switch (dir) {
case 'LR':
return 'RIGHT';
case 'RL':
return 'LEFT';
case 'TB':
return 'DOWN';
case 'BT':
return 'UP';
default:
return 'DOWN';
}
}
function setIncludeChildrenPolicy(nodeId: string, ancestorId: string) {
const node = nodeDb[nodeId];
if (!node) {
return;
}
if (node?.layoutOptions === undefined) {
node.layoutOptions = {};
}
node.layoutOptions['elk.hierarchyHandling'] = 'INCLUDE_CHILDREN';
if (node.id !== ancestorId) {
setIncludeChildrenPolicy(node.parentId, ancestorId);
}
}
function intersectLine(
p1: { y: number; x: number },
p2: { y: number; x: number },
q1: { x: any; y: any },
q2: { x: any; y: any }
) {
log.debug('UIO intersectLine', p1, p2, q1, q2);
// Algorithm from J. Avro, (ed.) Graphics Gems, No 2, Morgan Kaufmann, 1994,
// p7 and p473.
// let a1, a2, b1, b2, c1, c2;
// let r1, r2, r3, r4;
// let denom, offset, num;
// let x, y;
// Compute a1, b1, c1, where line joining points 1 and 2 is F(x,y) = a1 x +
// b1 y + c1 = 0.
const a1 = p2.y - p1.y;
const b1 = p1.x - p2.x;
const c1 = p2.x * p1.y - p1.x * p2.y;
// Compute r3 and r4.
const r3 = a1 * q1.x + b1 * q1.y + c1;
const r4 = a1 * q2.x + b1 * q2.y + c1;
// Check signs of r3 and r4. If both point 3 and point 4 lie on
// same side of line 1, the line segments do not intersect.
if (r3 !== 0 && r4 !== 0 && sameSign(r3, r4)) {
return /*DON'T_INTERSECT*/;
}
// Compute a2, b2, c2 where line joining points 3 and 4 is G(x,y) = a2 x + b2 y + c2 = 0
const a2 = q2.y - q1.y;
const b2 = q1.x - q2.x;
const c2 = q2.x * q1.y - q1.x * q2.y;
// Compute r1 and r2
const r1 = a2 * p1.x + b2 * p1.y + c2;
const r2 = a2 * p2.x + b2 * p2.y + c2;
// Check signs of r1 and r2. If both point 1 and point 2 lie
// on same side of second line segment, the line segments do
// not intersect.
if (r1 !== 0 && r2 !== 0 && sameSign(r1, r2)) {
return /*DON'T_INTERSECT*/;
}
// Line segments intersect: compute intersection point.
const denom = a1 * b2 - a2 * b1;
if (denom === 0) {
return /*COLLINEAR*/;
}
const offset = Math.abs(denom / 2);
// The denom/2 is to get rounding instead of truncating. It
// is added or subtracted to the numerator, depending upon the
// sign of the numerator.
let num = b1 * c2 - b2 * c1;
const x = num < 0 ? (num - offset) / denom : (num + offset) / denom;
num = a2 * c1 - a1 * c2;
const y = num < 0 ? (num - offset) / denom : (num + offset) / denom;
return { x: x, y: y };
}
function sameSign(r1: number, r2: number) {
return r1 * r2 > 0;
}
const diamondIntersection = (
bounds: { x: any; y: any; width: any; height: any },
outsidePoint: { x: number; y: number },
insidePoint: any
) => {
const x1 = bounds.x;
const y1 = bounds.y;
const w = bounds.width; //+ bounds.padding;
const h = bounds.height; // + bounds.padding;
const polyPoints = [
{ x: x1, y: y1 - h / 2 },
{ x: x1 + w / 2, y: y1 },
{ x: x1, y: y1 + h / 2 },
{ x: x1 - w / 2, y: y1 },
];
log.debug(
`UIO diamondIntersection calc abc89:
outsidePoint: ${JSON.stringify(outsidePoint)}
insidePoint : ${JSON.stringify(insidePoint)}
node : x:${bounds.x} y:${bounds.y} w:${bounds.width} h:${bounds.height}`,
polyPoints
);
const intersections = [];
let minX = Number.POSITIVE_INFINITY;
let minY = Number.POSITIVE_INFINITY;
polyPoints.forEach(function (entry) {
minX = Math.min(minX, entry.x);
minY = Math.min(minY, entry.y);
});
// const left = x1 - w / 2;
// const top = y1 + h / 2;
for (let i = 0; i < polyPoints.length; i++) {
const p1 = polyPoints[i];
const p2 = polyPoints[i < polyPoints.length - 1 ? i + 1 : 0];
const intersect = intersectLine(
bounds,
outsidePoint,
{ x: p1.x, y: p1.y },
{ x: p2.x, y: p2.y }
);
if (intersect) {
intersections.push(intersect);
}
}
if (!intersections.length) {
return bounds;
}
log.debug('UIO intersections', intersections);
if (intersections.length > 1) {
// More intersections, find the one nearest to edge end point
intersections.sort(function (p, q) {
const pdx = p.x - outsidePoint.x;
const pdy = p.y - outsidePoint.y;
const distp = Math.sqrt(pdx * pdx + pdy * pdy);
const qdx = q.x - outsidePoint.x;
const qdy = q.y - outsidePoint.y;
const distq = Math.sqrt(qdx * qdx + qdy * qdy);
return distp < distq ? -1 : distp === distq ? 0 : 1;
});
}
return intersections[0];
};
const intersection = (
node: { x: any; y: any; width: number; height: number },
outsidePoint: { x: number; y: number },
insidePoint: { x: number; y: number }
) => {
log.debug(`intersection calc abc89:
outsidePoint: ${JSON.stringify(outsidePoint)}
insidePoint : ${JSON.stringify(insidePoint)}
node : x:${node.x} y:${node.y} w:${node.width} h:${node.height}`);
const x = node.x;
const y = node.y;
const dx = Math.abs(x - insidePoint.x);
// const dy = Math.abs(y - insidePoint.y);
const w = node.width / 2;
let r = insidePoint.x < outsidePoint.x ? w - dx : w + dx;
const h = node.height / 2;
const Q = Math.abs(outsidePoint.y - insidePoint.y);
const R = Math.abs(outsidePoint.x - insidePoint.x);
if (Math.abs(y - outsidePoint.y) * w > Math.abs(x - outsidePoint.x) * h) {
// Intersection is top or bottom of rect.
const q = insidePoint.y < outsidePoint.y ? outsidePoint.y - h - y : y - h - outsidePoint.y;
r = (R * q) / Q;
const res = {
x: insidePoint.x < outsidePoint.x ? insidePoint.x + r : insidePoint.x - R + r,
y: insidePoint.y < outsidePoint.y ? insidePoint.y + Q - q : insidePoint.y - Q + q,
};
if (r === 0) {
res.x = outsidePoint.x;
res.y = outsidePoint.y;
}
if (R === 0) {
res.x = outsidePoint.x;
}
if (Q === 0) {
res.y = outsidePoint.y;
}
log.debug(`abc89 topp/bott calc, Q ${Q}, q ${q}, R ${R}, r ${r}`, res); // cspell: disable-line
return res;
} else {
// Intersection onn sides of rect
if (insidePoint.x < outsidePoint.x) {
r = outsidePoint.x - w - x;
} else {
// r = outsidePoint.x - w - x;
r = x - w - outsidePoint.x;
}
const q = (Q * r) / R;
// OK let _x = insidePoint.x < outsidePoint.x ? insidePoint.x + R - r : insidePoint.x + dx - w;
// OK let _x = insidePoint.x < outsidePoint.x ? insidePoint.x + R - r : outsidePoint.x + r;
let _x = insidePoint.x < outsidePoint.x ? insidePoint.x + R - r : insidePoint.x - R + r;
// let _x = insidePoint.x < outsidePoint.x ? insidePoint.x + R - r : outsidePoint.x + r;
let _y = insidePoint.y < outsidePoint.y ? insidePoint.y + q : insidePoint.y - q;
log.debug(`sides calc abc89, Q ${Q}, q ${q}, R ${R}, r ${r}`, { _x, _y });
if (r === 0) {
_x = outsidePoint.x;
_y = outsidePoint.y;
}
if (R === 0) {
_x = outsidePoint.x;
}
if (Q === 0) {
_y = outsidePoint.y;
}
return { x: _x, y: _y };
}
};
const outsideNode = (
node: { x: any; y: any; width: number; height: number },
point: { x: number; y: number }
) => {
const x = node.x;
const y = node.y;
const dx = Math.abs(point.x - x);
const dy = Math.abs(point.y - y);
const w = node.width / 2;
const h = node.height / 2;
if (dx >= w || dy >= h) {
return true;
}
return false;
};
/**
* This function will page a path and node where the last point(s) in the path is inside the node
* and return an update path ending by the border of the node.
*/
const cutPathAtIntersect = (
_points: any[],
bounds: { x: any; y: any; width: any; height: any; padding: any },
isDiamond: boolean
) => {
log.debug('UIO cutPathAtIntersect Points:', _points, 'node:', bounds, 'isDiamond', isDiamond);
const points: any[] = [];
let lastPointOutside = _points[0];
let isInside = false;
_points.forEach((point: any) => {
// const node = clusterDb[edge.toCluster].node;
log.debug(' checking point', point, bounds);
// check if point is inside the boundary rect
if (!outsideNode(bounds, point) && !isInside) {
// First point inside the rect found
// Calc the intersection coord between the point anf the last point outside the rect
let inter;
if (isDiamond) {
const inter2 = diamondIntersection(bounds, lastPointOutside, point);
const distance = Math.sqrt(
(lastPointOutside.x - inter2.x) ** 2 + (lastPointOutside.y - inter2.y) ** 2
);
if (distance > 1) {
inter = inter2;
}
}
if (!inter) {
inter = intersection(bounds, lastPointOutside, point);
}
// Check case where the intersection is the same as the last point
let pointPresent = false;
points.forEach((p) => {
pointPresent = pointPresent || (p.x === inter.x && p.y === inter.y);
});
// if (!pointPresent) {
if (!points.some((e) => e.x === inter.x && e.y === inter.y)) {
points.push(inter);
} else {
log.debug('abc88 no intersect', inter, points);
}
// points.push(inter);
isInside = true;
} else {
// Outside
log.debug('abc88 outside', point, lastPointOutside, points);
lastPointOutside = point;
// points.push(point);
if (!isInside) {
points.push(point);
}
}
});
log.debug('returning points', points);
return points;
};
// @ts-ignore - ELK is not typed
const elk = new ELK();
const element = svg.select('g');
// Add the arrowheads to the svg
insertMarkers(element, data4Layout.markers, data4Layout.type, data4Layout.diagramId);
// Setup the graph with the layout options and the data for the layout
let elkGraph: any = {
id: 'root',
layoutOptions: {
'elk.hierarchyHandling': 'INCLUDE_CHILDREN',
'elk.algorithm': algorithm,
'nodePlacement.strategy': data4Layout.config.elk?.nodePlacementStrategy,
'elk.layered.mergeEdges': data4Layout.config.elk?.mergeEdges,
'elk.direction': 'DOWN',
'spacing.baseValue': 35,
'elk.layered.unnecessaryBendpoints': true,
'elk.layered.cycleBreaking.strategy': data4Layout.config.elk?.cycleBreakingStrategy,
// 'spacing.nodeNode': 20,
// 'spacing.nodeNodeBetweenLayers': 25,
// 'spacing.edgeNode': 20,
// 'spacing.edgeNodeBetweenLayers': 10,
// 'spacing.edgeEdge': 10,
// 'spacing.edgeEdgeBetweenLayers': 20,
// 'spacing.nodeSelfLoop': 20,
// Tweaking options
// 'elk.layered.nodePlacement.favorStraightEdges': true,
// 'nodePlacement.feedbackEdges': true,
// 'elk.layered.wrapping.multiEdge.improveCuts': true,
// 'elk.layered.wrapping.multiEdge.improveWrappedEdges': true,
// 'elk.layered.wrapping.strategy': 'MULTI_EDGE',
// 'elk.layered.edgeRouting.selfLoopDistribution': 'EQUALLY',
// 'elk.layered.mergeHierarchyEdges': true,
// 'elk.layered.feedbackEdges': true,
// 'elk.layered.crossingMinimization.semiInteractive': true,
// 'elk.layered.edgeRouting.splines.sloppy.layerSpacingFactor': 1,
// 'elk.layered.edgeRouting.polyline.slopedEdgeZoneWidth': 4.0,
// 'elk.layered.wrapping.validify.strategy': 'LOOK_BACK',
// 'elk.insideSelfLoops.activate': true,
// 'elk.alg.layered.options.EdgeStraighteningStrategy': 'NONE',
// 'elk.layered.considerModelOrder.strategy': 'NODES_AND_EDGES', // NODES_AND_EDGES
// 'elk.layered.wrapping.cutting.strategy': 'ARD', // NODES_AND_EDGES
},
children: [],
edges: [],
};
log.info('Drawing flowchart using v4 renderer', elk);
// Set the direction of the graph based on the parsed information
const dir = data4Layout.direction || 'DOWN';
elkGraph.layoutOptions['elk.direction'] = dir2ElkDirection(dir);
// Create the lookup db for the subgraphs and their children to used when creating
// the tree structured graph
const parentLookupDb: any = addSubGraphs(data4Layout.nodes);
// Add elements in the svg to be used to hold the subgraphs container
// elements and the nodes
const subGraphsEl = svg.insert('g').attr('class', 'subgraphs');
const nodeEl = svg.insert('g').attr('class', 'nodes');
// Add the nodes to the graph, this will entail creating the actual nodes
// in order to get the size of the node. You can't get the size of a node
// that is not in the dom so we need to add it to the dom, get the size
// we will position the nodes when we get the layout from elkjs
elkGraph = await addVertices(nodeEl, data4Layout.nodes, elkGraph);
// Time for the edges, we start with adding an element in the node to hold the edges
const edgesEl = svg.insert('g').attr('class', 'edges edgePaths');
// Add the edges to the elk graph, this will entail creating the actual edges
elkGraph = await addEdges(data4Layout, elkGraph, svg);
// Iterate through all nodes and add the top level nodes to the graph
const nodes = data4Layout.nodes;
nodes.forEach((n: { id: string | number }) => {
const node = nodeDb[n.id];
// Subgraph
if (parentLookupDb.childrenById[node.id] !== undefined) {
node.labels = [
{
text: node.label,
width: node?.labelData?.width || 50,
height: node?.labelData?.height || 50,
},
(node.width = node.width + 2 * node.padding),
log.debug('UIO node label', node?.labelData?.width, node.padding),
];
node.layoutOptions = {
'spacing.baseValue': 30,
'nodeLabels.placement': '[H_CENTER V_TOP, INSIDE]',
};
if (node.dir) {
node.layoutOptions = {
...node.layoutOptions,
'elk.algorithm': algorithm,
'elk.direction': dir2ElkDirection(node.dir),
'nodePlacement.strategy': data4Layout.config.elk?.nodePlacementStrategy,
'elk.layered.mergeEdges': data4Layout.config.elk?.mergeEdges,
'elk.hierarchyHandling': 'SEPARATE_CHILDREN',
};
}
delete node.x;
delete node.y;
delete node.width;
delete node.height;
}
});
elkGraph.edges.forEach((edge: any) => {
const source = edge.sources[0];
const target = edge.targets[0];
if (nodeDb[source].parentId !== nodeDb[target].parentId) {
const ancestorId = findCommonAncestor(source, target, parentLookupDb);
// an edge that breaks a subgraph has been identified, set configuration accordingly
setIncludeChildrenPolicy(source, ancestorId);
setIncludeChildrenPolicy(target, ancestorId);
}
});
const g = await elk.layout(elkGraph);
// debugger;
await drawNodes(0, 0, g.children, svg, subGraphsEl, 0);
g.edges?.map(
(edge: {
sources: (string | number)[];
targets: (string | number)[];
start: any;
end: any;
sections: { startPoint: any; endPoint: any; bendPoints: any }[];
points: any[];
x: any;
labels: { height: number; width: number; x: number; y: number }[];
y: any;
}) => {
// (elem, edge, clusterDb, diagramType, graph, id)
const startNode = nodeDb[edge.sources[0]];
const startCluster = parentLookupDb[edge.sources[0]];
const endNode = nodeDb[edge.targets[0]];
const sourceId = edge.start;
const targetId = edge.end;
const offset = calcOffset(sourceId, targetId, parentLookupDb);
log.debug(
'offset',
offset,
sourceId,
' ==> ',
targetId,
'edge:',
edge,
'cluster:',
startCluster,
startNode
);
if (edge.sections) {
const src = edge.sections[0].startPoint;
const dest = edge.sections[0].endPoint;
const segments = edge.sections[0].bendPoints ? edge.sections[0].bendPoints : [];
const segPoints = segments.map((segment: { x: any; y: any }) => {
return { x: segment.x + offset.x, y: segment.y + offset.y };
});
edge.points = [
{ x: src.x + offset.x, y: src.y + offset.y },
...segPoints,
{ x: dest.x + offset.x, y: dest.y + offset.y },
];
let sw = startNode.width;
let ew = endNode.width;
if (startNode.isGroup) {
const bbox = startNode.domId.node().getBBox();
// sw = Math.max(bbox.width, startNode.width, startNode.labels[0].width);
sw = Math.max(startNode.width, startNode.labels[0].width + startNode.padding);
// sw = startNode.width;
log.debug(
'UIO width',
startNode.id,
startNode.with,
'bbox.width=',
bbox.width,
'lw=',
startNode.labels[0].width,
'node:',
startNode.width,
'SW = ',
sw
// 'HTML:',
// startNode.domId.node().innerHTML
);
}
if (endNode.isGroup) {
const bbox = endNode.domId.node().getBBox();
ew = Math.max(endNode.width, endNode.labels[0].width + endNode.padding);
log.debug(
'UIO width',
startNode.id,
startNode.with,
bbox.width,
'EW = ',
ew,
'HTML:',
startNode.innerHTML
);
}
if (startNode.shape === 'diamond') {
edge.points.unshift({
x: startNode.x + startNode.width / 2 + offset.x,
y: startNode.y + startNode.height / 2 + offset.y,
});
}
if (endNode.shape === 'diamond') {
const x = endNode.x + endNode.width / 2 + offset.x;
// Add a point at the center of the diamond
if (
Math.abs(edge.points[edge.points.length - 1].y - endNode.y - offset.y) > 0.001 ||
Math.abs(edge.points[edge.points.length - 1].x - x) > 0.001
) {
edge.points.push({
x: endNode.x + endNode.width / 2 + offset.x,
y: endNode.y + endNode.height / 2 + offset.y,
});
}
}
edge.points = cutPathAtIntersect(
edge.points.reverse(),
{
x: startNode.x + startNode.width / 2 + offset.x,
y: startNode.y + startNode.height / 2 + offset.y,
width: sw,
height: startNode.height,
padding: startNode.padding,
},
startNode.shape === 'diamond'
).reverse();
edge.points = cutPathAtIntersect(
edge.points,
{
x: endNode.x + ew / 2 + endNode.offset.x,
y: endNode.y + endNode.height / 2 + endNode.offset.y,
width: ew,
height: endNode.height,
padding: endNode.padding,
},
endNode.shape === 'diamond'
);
const paths = insertEdge(
edgesEl,
edge,
clusterDb,
data4Layout.type,
startNode,
endNode,
data4Layout.diagramId
);
log.info('APA12 edge points after insert', JSON.stringify(edge.points));
edge.x = edge.labels[0].x + offset.x + edge.labels[0].width / 2;
edge.y = edge.labels[0].y + offset.y + edge.labels[0].height / 2;
positionEdgeLabel(edge, paths);
}
}
);
};