Files
mermaid/packages/mermaid-layout-tidy-tree/src/layout.ts
2025-08-22 19:09:38 +05:30

630 lines
18 KiB
TypeScript

import type { LayoutData } from 'mermaid';
import type { Bounds, Point } from 'mermaid/src/types.js';
import { BoundingBox, Layout } from 'non-layered-tidy-tree-layout';
import type {
Edge,
LayoutResult,
Node,
PositionedEdge,
PositionedNode,
TidyTreeNode,
} from './types.js';
/**
* Execute the tidy-tree layout algorithm on generic layout data
*
* This function takes layout data and uses the non-layered-tidy-tree-layout
* algorithm to calculate optimal node positions for tree structures.
*
* @param data - The layout data containing nodes, edges, and configuration
* @param config - Mermaid configuration object
* @returns Promise resolving to layout result with positioned nodes and edges
*/
export function executeTidyTreeLayout(data: LayoutData): Promise<LayoutResult> {
let intersectionShift = 50;
return new Promise((resolve, reject) => {
try {
if (!data.nodes || !Array.isArray(data.nodes) || data.nodes.length === 0) {
throw new Error('No nodes found in layout data');
}
if (!data.edges || !Array.isArray(data.edges)) {
data.edges = [];
}
const { leftTree, rightTree, rootNode } = convertToDualTreeFormat(data);
const gap = 20;
const bottomPadding = 40;
intersectionShift = 30;
const bb = new BoundingBox(gap, bottomPadding);
const layout = new Layout(bb);
let leftResult = null;
let rightResult = null;
if (leftTree) {
const leftLayoutResult = layout.layout(leftTree);
leftResult = leftLayoutResult.result;
}
if (rightTree) {
const rightLayoutResult = layout.layout(rightTree);
rightResult = rightLayoutResult.result;
}
const positionedNodes = combineAndPositionTrees(rootNode, leftResult, rightResult);
const positionedEdges = calculateEdgePositions(
data.edges,
positionedNodes,
intersectionShift
);
resolve({
nodes: positionedNodes,
edges: positionedEdges,
});
} catch (error) {
reject(error);
}
});
}
/**
* Convert LayoutData to dual-tree format (left and right trees)
*
* This function builds two separate tree structures from the nodes and edges,
* alternating children between left and right trees.
*/
function convertToDualTreeFormat(data: LayoutData): {
leftTree: TidyTreeNode | null;
rightTree: TidyTreeNode | null;
rootNode: TidyTreeNode;
} {
const { nodes, edges } = data;
const nodeMap = new Map<string, Node>();
nodes.forEach((node) => nodeMap.set(node.id, node));
const children = new Map<string, string[]>();
const parents = new Map<string, string>();
edges.forEach((edge) => {
const parentId = edge.start;
const childId = edge.end;
if (parentId && childId) {
if (!children.has(parentId)) {
children.set(parentId, []);
}
children.get(parentId)!.push(childId);
parents.set(childId, parentId);
}
});
const rootNodeData = nodes.find((node) => !parents.has(node.id));
if (!rootNodeData && nodes.length === 0) {
throw new Error('No nodes available to create tree');
}
const actualRoot = rootNodeData ?? nodes[0];
const rootNode: TidyTreeNode = {
id: actualRoot.id,
width: actualRoot.width ?? 100,
height: actualRoot.height ?? 50,
_originalNode: actualRoot,
};
const rootChildren = children.get(actualRoot.id) ?? [];
const leftChildren: string[] = [];
const rightChildren: string[] = [];
rootChildren.forEach((childId, index) => {
if (index % 2 === 0) {
leftChildren.push(childId);
} else {
rightChildren.push(childId);
}
});
const leftTree = leftChildren.length > 0 ? buildSubTree(leftChildren, children, nodeMap) : null;
const rightTree =
rightChildren.length > 0 ? buildSubTree(rightChildren, children, nodeMap) : null;
return { leftTree, rightTree, rootNode };
}
/**
* Build a subtree from a list of root children
* For horizontal trees, we need to transpose width/height since the tree will be rotated 90°
*/
function buildSubTree(
rootChildren: string[],
children: Map<string, string[]>,
nodeMap: Map<string, Node>
): TidyTreeNode {
const virtualRoot: TidyTreeNode = {
id: `virtual-root-${Math.random()}`,
width: 1,
height: 1,
children: rootChildren
.map((childId) => nodeMap.get(childId))
.filter((child): child is Node => child !== undefined)
.map((child) => convertNodeToTidyTreeTransposed(child, children, nodeMap)),
};
return virtualRoot;
}
/**
* Recursively convert a node and its children to tidy-tree format
* This version transposes width/height for horizontal tree layout
*/
function convertNodeToTidyTreeTransposed(
node: Node,
children: Map<string, string[]>,
nodeMap: Map<string, Node>
): TidyTreeNode {
const childIds = children.get(node.id) ?? [];
const childNodes = childIds
.map((childId) => nodeMap.get(childId))
.filter((child): child is Node => child !== undefined)
.map((child) => convertNodeToTidyTreeTransposed(child, children, nodeMap));
return {
id: node.id,
width: node.height ?? 50,
height: node.width ?? 100,
children: childNodes.length > 0 ? childNodes : undefined,
_originalNode: node,
};
}
/**
* Combine and position the left and right trees around the root node
* Creates a bidirectional layout where left tree grows left and right tree grows right
*/
function combineAndPositionTrees(
rootNode: TidyTreeNode,
leftResult: TidyTreeNode | null,
rightResult: TidyTreeNode | null
): PositionedNode[] {
const positionedNodes: PositionedNode[] = [];
const rootX = 0;
const rootY = 0;
const treeSpacing = rootNode.width / 2 + 30;
const leftTreeNodes: PositionedNode[] = [];
const rightTreeNodes: PositionedNode[] = [];
if (leftResult?.children) {
positionLeftTreeBidirectional(leftResult.children, leftTreeNodes, rootX - treeSpacing, rootY);
}
if (rightResult?.children) {
positionRightTreeBidirectional(
rightResult.children,
rightTreeNodes,
rootX + treeSpacing,
rootY
);
}
let leftTreeCenterY = 0;
let rightTreeCenterY = 0;
if (leftTreeNodes.length > 0) {
const leftTreeXPositions = [...new Set(leftTreeNodes.map((node) => node.x))].sort(
(a, b) => b - a
);
const firstLevelLeftX = leftTreeXPositions[0];
const firstLevelLeftNodes = leftTreeNodes.filter((node) => node.x === firstLevelLeftX);
if (firstLevelLeftNodes.length > 0) {
const leftMinY = Math.min(
...firstLevelLeftNodes.map((node) => node.y - (node.height ?? 50) / 2)
);
const leftMaxY = Math.max(
...firstLevelLeftNodes.map((node) => node.y + (node.height ?? 50) / 2)
);
leftTreeCenterY = (leftMinY + leftMaxY) / 2;
}
}
if (rightTreeNodes.length > 0) {
const rightTreeXPositions = [...new Set(rightTreeNodes.map((node) => node.x))].sort(
(a, b) => a - b
);
const firstLevelRightX = rightTreeXPositions[0];
const firstLevelRightNodes = rightTreeNodes.filter((node) => node.x === firstLevelRightX);
if (firstLevelRightNodes.length > 0) {
const rightMinY = Math.min(
...firstLevelRightNodes.map((node) => node.y - (node.height ?? 50) / 2)
);
const rightMaxY = Math.max(
...firstLevelRightNodes.map((node) => node.y + (node.height ?? 50) / 2)
);
rightTreeCenterY = (rightMinY + rightMaxY) / 2;
}
}
const leftTreeOffset = -leftTreeCenterY;
const rightTreeOffset = -rightTreeCenterY;
positionedNodes.push({
id: String(rootNode.id),
x: rootX,
y: rootY + 20,
section: 'root',
width: rootNode._originalNode?.width ?? rootNode.width,
height: rootNode._originalNode?.height ?? rootNode.height,
originalNode: rootNode._originalNode,
});
const leftTreeNodesWithOffset = leftTreeNodes.map((node) => ({
id: node.id,
x: node.x - (node.width ?? 0) / 2,
y: node.y + leftTreeOffset + (node.height ?? 0) / 2,
section: 'left' as const,
width: node.width,
height: node.height,
originalNode: node.originalNode,
}));
const rightTreeNodesWithOffset = rightTreeNodes.map((node) => ({
id: node.id,
x: node.x + (node.width ?? 0) / 2,
y: node.y + rightTreeOffset + (node.height ?? 0) / 2,
section: 'right' as const,
width: node.width,
height: node.height,
originalNode: node.originalNode,
}));
positionedNodes.push(...leftTreeNodesWithOffset);
positionedNodes.push(...rightTreeNodesWithOffset);
return positionedNodes;
}
/**
* Position nodes from the left tree in a bidirectional layout (grows to the left)
* Rotates the tree 90 degrees counterclockwise so it grows horizontally to the left
*/
function positionLeftTreeBidirectional(
nodes: TidyTreeNode[],
positionedNodes: PositionedNode[],
offsetX: number,
offsetY: number
): void {
nodes.forEach((node) => {
const distanceFromRoot = node.y ?? 0;
const verticalPosition = node.x ?? 0;
const originalWidth = node._originalNode?.width ?? 100;
const originalHeight = node._originalNode?.height ?? 50;
const adjustedY = offsetY + verticalPosition;
positionedNodes.push({
id: String(node.id),
x: offsetX - distanceFromRoot,
y: adjustedY,
width: originalWidth,
height: originalHeight,
originalNode: node._originalNode,
});
if (node.children) {
positionLeftTreeBidirectional(node.children, positionedNodes, offsetX, offsetY);
}
});
}
/**
* Position nodes from the right tree in a bidirectional layout (grows to the right)
* Rotates the tree 90 degrees clockwise so it grows horizontally to the right
*/
function positionRightTreeBidirectional(
nodes: TidyTreeNode[],
positionedNodes: PositionedNode[],
offsetX: number,
offsetY: number
): void {
nodes.forEach((node) => {
const distanceFromRoot = node.y ?? 0;
const verticalPosition = node.x ?? 0;
const originalWidth = node._originalNode?.width ?? 100;
const originalHeight = node._originalNode?.height ?? 50;
const adjustedY = offsetY + verticalPosition;
positionedNodes.push({
id: String(node.id),
x: offsetX + distanceFromRoot,
y: adjustedY,
width: originalWidth,
height: originalHeight,
originalNode: node._originalNode,
});
if (node.children) {
positionRightTreeBidirectional(node.children, positionedNodes, offsetX, offsetY);
}
});
}
/**
* Calculate the intersection point of a line with a circle
* @param circle - Circle coordinates and radius
* @param lineStart - Starting point of the line
* @param lineEnd - Ending point of the line
* @returns The intersection point
*/
function computeCircleEdgeIntersection(circle: Bounds, lineStart: Point, lineEnd: Point): Point {
const radius = Math.min(circle.width, circle.height) / 2;
const dx = lineEnd.x - lineStart.x;
const dy = lineEnd.y - lineStart.y;
const length = Math.sqrt(dx * dx + dy * dy);
if (length === 0) {
return lineStart;
}
const nx = dx / length;
const ny = dy / length;
return {
x: circle.x - nx * radius,
y: circle.y - ny * radius,
};
}
function intersection(node: PositionedNode, outsidePoint: Point, insidePoint: Point): Point {
const x = node.x;
const y = node.y;
if (!node.width || !node.height) {
return { x: outsidePoint.x, y: outsidePoint.y };
}
const dx = Math.abs(x - insidePoint.x);
const w = node?.width / 2;
let r = insidePoint.x < outsidePoint.x ? w - dx : w + dx;
const h = node.height / 2;
const Q = Math.abs(outsidePoint.y - insidePoint.y);
const R = Math.abs(outsidePoint.x - insidePoint.x);
if (Math.abs(y - outsidePoint.y) * w > Math.abs(x - outsidePoint.x) * h) {
// Intersection is top or bottom of rect.
const q = insidePoint.y < outsidePoint.y ? outsidePoint.y - h - y : y - h - outsidePoint.y;
r = (R * q) / Q;
const res = {
x: insidePoint.x < outsidePoint.x ? insidePoint.x + r : insidePoint.x - R + r,
y: insidePoint.y < outsidePoint.y ? insidePoint.y + Q - q : insidePoint.y - Q + q,
};
if (r === 0) {
res.x = outsidePoint.x;
res.y = outsidePoint.y;
}
if (R === 0) {
res.x = outsidePoint.x;
}
if (Q === 0) {
res.y = outsidePoint.y;
}
return res;
} else {
if (insidePoint.x < outsidePoint.x) {
r = outsidePoint.x - w - x;
} else {
r = x - w - outsidePoint.x;
}
const q = (Q * r) / R;
let _x = insidePoint.x < outsidePoint.x ? insidePoint.x + R - r : insidePoint.x - R + r;
let _y = insidePoint.y < outsidePoint.y ? insidePoint.y + q : insidePoint.y - q;
if (r === 0) {
_x = outsidePoint.x;
_y = outsidePoint.y;
}
if (R === 0) {
_x = outsidePoint.x;
}
if (Q === 0) {
_y = outsidePoint.y;
}
return { x: _x, y: _y };
}
}
/**
* Calculate edge positions based on positioned nodes
* Now includes tree membership and node dimensions for precise edge calculations
* Edges now stop at shape boundaries instead of extending to centers
*/
function calculateEdgePositions(
edges: Edge[],
positionedNodes: PositionedNode[],
intersectionShift: number
): PositionedEdge[] {
const nodeInfo = new Map<string, PositionedNode>();
positionedNodes.forEach((node) => {
nodeInfo.set(node.id, node);
});
return edges.map((edge) => {
const sourceNode = nodeInfo.get(edge.start ?? '');
const targetNode = nodeInfo.get(edge.end ?? '');
if (!sourceNode || !targetNode) {
return {
id: edge.id,
source: edge.start ?? '',
target: edge.end ?? '',
startX: 0,
startY: 0,
midX: 0,
midY: 0,
endX: 0,
endY: 0,
points: [{ x: 0, y: 0 }],
sourceSection: undefined,
targetSection: undefined,
sourceWidth: undefined,
sourceHeight: undefined,
targetWidth: undefined,
targetHeight: undefined,
};
}
const sourceCenter = { x: sourceNode.x, y: sourceNode.y };
const targetCenter = { x: targetNode.x, y: targetNode.y };
const isSourceRound = ['circle', 'cloud', 'bang'].includes(
sourceNode.originalNode?.shape ?? ''
);
const isTargetRound = ['circle', 'cloud', 'bang'].includes(
targetNode.originalNode?.shape ?? ''
);
let startPos = isSourceRound
? computeCircleEdgeIntersection(
{
x: sourceNode.x,
y: sourceNode.y,
width: sourceNode.width ?? 100,
height: sourceNode.height ?? 100,
},
targetCenter,
sourceCenter
)
: intersection(sourceNode, sourceCenter, targetCenter);
let endPos = isTargetRound
? computeCircleEdgeIntersection(
{
x: targetNode.x,
y: targetNode.y,
width: targetNode.width ?? 100,
height: targetNode.height ?? 100,
},
sourceCenter,
targetCenter
)
: intersection(targetNode, targetCenter, sourceCenter);
const midX = (startPos.x + endPos.x) / 2;
const midY = (startPos.y + endPos.y) / 2;
const points = [startPos];
if (sourceNode.section === 'left') {
points.push({
x: sourceNode.x - (sourceNode.width ?? 0) / 2 - intersectionShift,
y: sourceNode.y,
});
} else if (sourceNode.section === 'right') {
points.push({
x: sourceNode.x + (sourceNode.width ?? 0) / 2 + intersectionShift,
y: sourceNode.y,
});
}
if (targetNode.section === 'left') {
points.push({
x: targetNode.x + (targetNode.width ?? 0) / 2 + intersectionShift,
y: targetNode.y,
});
} else if (targetNode.section === 'right') {
points.push({
x: targetNode.x - (targetNode.width ?? 0) / 2 - intersectionShift,
y: targetNode.y,
});
}
points.push(endPos);
const secondPoint = points.length > 1 ? points[1] : targetCenter;
startPos = isSourceRound
? computeCircleEdgeIntersection(
{
x: sourceNode.x,
y: sourceNode.y,
width: sourceNode.width ?? 100,
height: sourceNode.height ?? 100,
},
secondPoint,
sourceCenter
)
: intersection(sourceNode, secondPoint, sourceCenter);
points[0] = startPos;
const secondLastPoint = points.length > 1 ? points[points.length - 2] : sourceCenter;
endPos = isTargetRound
? computeCircleEdgeIntersection(
{
x: targetNode.x,
y: targetNode.y,
width: targetNode.width ?? 100,
height: targetNode.height ?? 100,
},
secondLastPoint,
targetCenter
)
: intersection(targetNode, secondLastPoint, targetCenter);
points[points.length - 1] = endPos;
return {
id: edge.id,
source: edge.start ?? '',
target: edge.end ?? '',
startX: startPos.x,
startY: startPos.y,
midX,
midY,
endX: endPos.x,
endY: endPos.y,
points,
sourceSection: sourceNode?.section,
targetSection: targetNode?.section,
sourceWidth: sourceNode?.width,
sourceHeight: sourceNode?.height,
targetWidth: targetNode?.width,
targetHeight: targetNode?.height,
};
});
}
/**
* Validate layout data structure
* @param data - The data to validate
* @returns True if data is valid, throws error otherwise
*/
export function validateLayoutData(data: LayoutData): boolean {
if (!data) {
throw new Error('Layout data is required');
}
if (!data.config) {
throw new Error('Configuration is required in layout data');
}
if (!Array.isArray(data.nodes)) {
throw new Error('Nodes array is required in layout data');
}
if (!Array.isArray(data.edges)) {
throw new Error('Edges array is required in layout data');
}
return true;
}